Italian Workshop on SPICA

INAF Headquarters, Monte Mario, 7-8 February 2013

The Low Noise Amplifiers of SAFARI Claudio Macculi¹,

Paolo Bastia², Guido Torrioli³, Luigi Piro¹

or Photonics and Nanotechnoloaies

Outline

- The TES Consortia for High Energy Astrophysics
- Involvement in the SAFARI/SPICA activities: The Cryogenic DC-LNA
- Design and preliminary test (by TAS-I, Milano)
- Test at IAPS Roma
- Conclusion

The Italian TES Consortium for HEA (IXO/ATHENA missions)

the space agencies CAN capitalise their investments

The SAFARI cryo DC-LNA is a DL-FLL technique spin-off

Multiplex tens of AC-biased X-ray pixels in the MHz range by applying the FDM tecnique

Involvement in the SAFARI/SPICA activities: The Cryogenic DC-LNA

SAFARI DETECTOR SYSTEM

FAR-IR PHOTONS Cable routing and thermal considerations give rise to a considerable harness length of over 10 m from FPA to BEE \rightarrow for SQuID readout it implies HIGH propagation delay \rightarrow instable system \rightarrow usual FLL scheme not for the SPICA case \rightarrow BBFB (SRON) scheme BUT it is necessary to boost the signal due to the long harness \rightarrow Cryo DC LNA!

Design and preliminary test (by TAS-I, Milano)

Cryo-test at IAPS Roma: results

Conclusion

• The prototype of the DC LNA for the SAFARI SPICA programme, has been tested at TAS-I and INAF/IAPS Roma both at warm and cold environment.

• At 135 K Gain up to 30 V/V and Pmax = 1.5 mW: well inside the requirements (20 V/V, 2 mW). The noise is to be further investigated.

• A second version of the LNA board will be produced, a sort of test bench to verify the simulated model and to see the limit of the present LNA

So, the designed LNA is a promising architecture for the DC cryogenic low noise amplifier for the SAFARI/SPICA programme. Further work (already ongoing) is needed to understand some detail about the noise at cold (135 K).